Le: 16-12-20

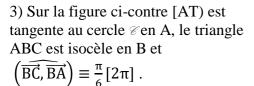
Prof : Chouihi Classe : 3M₂

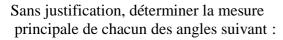
Exercice N°1 (4 points)

- 1) Calculer $\lim_{x\to 2} \frac{\sqrt{x^2+5}+\sqrt{5x-1}-6}{x-2}$
- 2) Le plan est orienté dans le sens direct. Dans la figure ci-contre ABCD est un

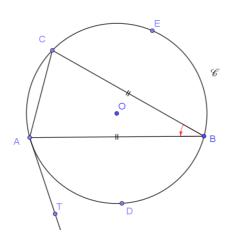
losange telque AB = 2 et
$$(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{4} [2\pi]$$

Calculer $d\acute{e}t(\overrightarrow{AB}, \overrightarrow{AD})$.





$$(\overrightarrow{AB}, \overrightarrow{AC})$$
; $(\overrightarrow{AT}, \overrightarrow{AB})$; $(\overrightarrow{CB}, \overrightarrow{CA})$; $(\overrightarrow{EA}, \overrightarrow{EB})$ et $(\overrightarrow{DA}, \overrightarrow{DB})$.

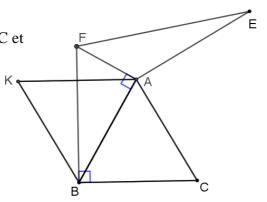


Exercice N°2 (3 points)

Sur la figure ci-contre les triangles ABC et AKB sont équilatéraux, les triangles ABF et BCF sont rectangles respectivement en A et en B et le triangle AEF est tel que :

$$\left(\widehat{\overrightarrow{AE},\overrightarrow{AF}}\right) \equiv \frac{2\pi}{3} \left[2\pi\right]$$

- 1) Déterminer, en justifiant, la mesure principale de chacun des angles : (AB, AE); (AC, AF) et (AC, AE)
- 2) Montrer que les droites (AK) et (BF) sont perpendiculaires.



Exercice N°3 (6 points)

On considère un carré ABCD de côté AB = 2a, a > 0.

On désigne par E et F les milieux respectifs des segments [CD] et [BC].

- 1) Montrer que les droites (AE) et (DF) sont perpendiculaires ; on désigne par I leur point d'intersection.
- 2) a) Calculer, en fonction de a, AE et en déduire $\cos(\widehat{DAE})$.
 - b) En calculant, de deux manières, \overrightarrow{AD} . \overrightarrow{AE} déduire que $IA = \frac{4a\sqrt{5}}{5}$
 - c) Calculer, en fonction de a, IE et ED.
- 3) On désigne par O le milieu du segment [EF] et on considère l'ensemble Γ des points M du plan vérifiant : \overrightarrow{MB} . \overrightarrow{MC} + \overrightarrow{MC} . \overrightarrow{MD} = a^2 .
 - a) Montrer que pour tout point M du plan on a :

$$\overrightarrow{MB}$$
. \overrightarrow{MC} + \overrightarrow{MC} . \overrightarrow{MD} = $20M^2 - a^2$.

b) Caractériser alors Γ .

Exercice $N^{\circ}4$ (7 points)

Soit f la fonction définie par : $f(x) = \begin{cases} \sqrt{x^2 - 2x + 5} + ax & \text{si } x \le 1\\ \frac{x^3 - 3x^2 - x + 3}{x^2 - 4x + 3} & \text{si } 1 < x < 3 \ (a \in IR) \end{cases}$ $\frac{\sqrt{x + 1} - 2}{x - 3} & \text{si } x > 3$

- 1) a) Déterminer D_f.
 - b) f est elle prolongeable par continuité en 3 ?
- 2) Pour quelle valeur de a f est elle continue en 1 ?

On suppose dans la suite que a = 0

- 3) a) Calculer : $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$
 - b) Montrer que la droite Δ : y=-x+1 est une asymptote oblique à C_f au voisinage de $-\infty$.
- 4) Calculer $\lim_{x \to +\infty} f(x)$
- 5) Pour $x \ne 1$, on pose $\varphi(x) = \frac{f(x) f(1)}{x 1}$. Etudier la limite de φ en 1.